云课堂高考答题技巧内容页

2023年高考总复习数学答案详解,2023年高考数学题型有哪些

2023-02-20 08:14:21答题技巧438

本内容由云课堂小编为大家分享:

高考数学常考知识点归纳

对于高三的学生很快就会面临继续学业或事业的选择,面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的选择。接下来云课堂小编为大家解读高考数学常考知识点相关内容!

Www.Xtw.Com.Cn

高考数学常考知识点

柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

(3)棱台:

几何特征:

①上下底面是相似的平行多边形

②侧面是梯形

③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:

①底面是全等的圆;

②母线与轴平行;

③轴与底面圆的半径垂直;

④侧面展开图是一个矩形.

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:

①底面是一个圆;

②母线交于圆锥的顶点;

③侧面展开图是一个扇形.

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:

①上下底面是两个圆;

②侧面母线交于原圆锥的顶点;

③侧面展开图是一个弓形.

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:

①球的截面是圆;

②球面上任意一点到球心的距离等于半径.

高考数学必备知识点

(一)导数第一定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义

(二)导数第二定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高考数学知识点

1、圆柱体:

表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、正方体

a—边长,S=6a2,V=a3

4、长方体

a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

5、棱柱

S—底面积h—高V=Sh

6、棱锥

S—底面积h—高V=Sh/3

7、棱台

S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

S1—上底面积,S2—下底面积,S0—中截面积

h—高,V=h(S1+S2+4S0)/6

9、圆柱

r—底半径,h—高,C—底面周长

S底—底面积,S侧—侧面积,S表—表面积C=2πr

S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

11、直圆锥

r—底半径h—高V=πr^2h/3

12、圆台

r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3

13、球

r—半径d—直径V=4/3πr^3=πd^3/6

14、球缺

h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

15、球台

r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

16、圆环体

R—环体半径D—环体直径r—环体截面半径d—环体截面直径

V=2π2Rr2=π2Dd2/4

17、桶状体

D—桶腹直径d—桶底直径h—桶高

V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高考数学知识点归纳

空间中的垂直关系

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

2、平面与平面垂直

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

高考数学知识点总结

复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.

在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.

1.知识网络图

复数知识点网络图

2.复数中的难点

(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.

(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.

(3)复数的辐角主值的求法.

(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.

3.复数中的重点

(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.

(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.

(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.

(4)复数集中一元二次方程和二项方程的解法.

云课堂(sxtgedu.net)专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息

再来一篇
上一篇:2023年高考数学知识点总结,2023年高考文科数学知识点 下一篇:2023年中考数学解题方法进阶训练,2023年高考数学文科卷子考试重点
猜你喜欢