云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!
线面垂直的证明过程设有一直线l与面S上两条相交直线AB、CD都垂直,则l⊥面S
假设l不垂直于面S,则要么l∥S,要么斜交于S且夹角不等于90。
当l∥S时,则l不可能与AB和CD都垂直。这是因为当l⊥AB时,过l任意作一个平面R与S交于m,则由线面平行的性质可知m∥l
∴m⊥AB
又∵l⊥CD
∴m⊥CD
∴AB∥CD,与已知条件矛盾。
当l斜交S时,过交点在S内作一直线n⊥l,则n和l构成一个新的平面T,且T和S斜交(若T⊥S,则n是两平面交线。由面面垂直的性质可知l⊥S,与l斜交S矛盾)。
∵l⊥AB
∴AB∥n
∵l⊥CD
∴CD∥n
∴AB∥CD,与已知条件矛盾。
综上,l⊥S
WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息