云课堂高考复习指导内容页

函数的定义域指的是什么(函数的定义域的含义)

2023-05-02 18:16:23复习指导289

云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!

一、函数的定义域及原则

1、定义:

设A,B是非空的数集,如果按照某种确定的对应关系$f$,使对于集合A中的任意一个数$x$,在集合B中都有唯一确定的数$f(x)$和它对应,那么就称$f:A to B$为从集合A到集合B的一个函数,计作 $y=f(x),xin A$。其中,$x$叫做自变量,$x$的取值范围A叫做函数的定义域.

2、确定函数定义域的原则

(1) 当函数$y=f(x)$用表格给出时,函数的定义域是指表格中实数$x$的集合.

(2) 当函数$y=f(x)$用图象给出时,函数的定义域是指图象在$x$轴上的投影所覆盖的实数$x$的集合.

(3) 当函数$y=f(x)$用解析式给出时,函数的定义域是指使解析式有意义的实数$x$的集合.

(4) 当函数$y=f(x)$由实际问题给出时,函数的定义域受问题的实际意义限制.

提醒:函数的定义域是非空数集.

二、函数的定义域相关例题

求下列函数的定义域

(1) $y=2x+3;$

(2) $f(x)=frac{1}{x+1};$

(3) $y=sqrt{1-x}+frac{1}{x+5};$

(4) $y=frac{3}{1-sqrt{1-x}}$.

答案:

(1) ${xmid x in R}$

(2) ${x mid x not=-1}$

(3) ${xmid x le1且xnot=-5}$

(4) ${xmid x le1且xnot=0 }$

解析:

(1) 函数 $y=2x+3$的定义域为${xmid x in R}$.

(2) 要使函数有意义,则有$x+1not=0,x not= -1.$ 故函数的定义域为${x mid x not=-1}$.

(3) 由已知得 $begin{cases}1-x geqslant 0,x+5not=0, end{cases}$解得$x leq 1$且$xnot=-5$.

故所求定义域为${xmid x le1且xnot=-5}$.

(4) 由已知得$begin{cases} 1-xge0,1-sqrt{1-x}not=0, end{cases}$解得$x le1且xnot=0$.

故所求定义域为${xmid x le1且xnot=0 }$.

WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息

再来一篇
上一篇:西汉一直是郡国并行制吗(西汉是郡县制吗) 下一篇:零摄氏度有没有温度(零摄氏度的物体内能为零吗为什么)
猜你喜欢