本文有太谷教育网小编为大家带来
【www.--考研】
专业课《高等代数》考研大纲和参考书目 参考教材及参考书:《高等代数》(第三版),北京大学编,高等教育出版社 《高等代数教程》(上、下册),王萼芳等编,清华大学出版社 课程内容(打*部分内容或章节要求重点掌握) 多项式: *整除概念,带余除法理论; 最大公因式定义及求法; *多项式互素的概念与性质; *因式分解定理和不可约多项式的性质; *复系数与实系数多项式的因式分解; 行列式: *行列式的定义; *行列式性质及按行按列展开法则,并用此计算行列式; Laplace定理; *克莱拇法则; *线性方程组: 消元法; 向量组的线性相关与线性无关性,向量组的极大无关组与秩; 矩阵的秩及求法; 线性方程组有解判别定理; 线性方程组基础解系、通解及解的结构; *矩阵: 矩阵线性运算,乘法,转置及运算律; 矩阵初等变换,初等矩阵; 逆矩阵极其存在条件,求逆矩阵; 分块矩阵运算; 二次型: *二次型的矩阵表示; 矩阵合同 *可逆线性变换化二次型为标准型; 惯性定理; *正定二次型判定; 线性空间 线性空间的定义与性质; *有限维线性空间的基与维数,向量坐标; *基变换与坐标变换; *子空间定义,维数与基、维数公式; *子空间的交与和,直和; 线性空间的同构; *线性变换 线性变换的运算,线性变换的矩阵 特征值与特征向量; 可对角化问题; 线性变换的值域与核; 不变子空间; 若尔当标准型的概念; 最小多项式; -矩阵 -矩阵等价标准型; *不变因子、行列式因子、初等因子的概念及其关系; *矩阵相似的条件; 若尔当标准型理论及求法; 欧氏空间 内积与欧氏空间定义,度量矩阵; 施密特正交化方法求标准正交基; *正交变换,对称变换; *对称矩阵的标准型及用正交线性替换化二次型为标准型; 酉空间介绍。太谷教育信息网(www.sxtgedu.net)研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息